3.832 \(\int \frac {x^2 \tan ^{-1}(a x)^{3/2}}{(c+a^2 c x^2)^{5/2}} \, dx\)

Optimal. Leaf size=247 \[ \frac {x^3 \tan ^{-1}(a x)^{3/2}}{3 c \left (a^2 c x^2+c\right )^{3/2}}-\frac {3 \sqrt {\frac {\pi }{2}} \sqrt {a^2 x^2+1} C\left (\sqrt {\frac {2}{\pi }} \sqrt {\tan ^{-1}(a x)}\right )}{8 a^3 c^2 \sqrt {a^2 c x^2+c}}+\frac {\sqrt {\frac {\pi }{6}} \sqrt {a^2 x^2+1} C\left (\sqrt {\frac {6}{\pi }} \sqrt {\tan ^{-1}(a x)}\right )}{24 a^3 c^2 \sqrt {a^2 c x^2+c}}+\frac {3 \sqrt {\tan ^{-1}(a x)}}{8 a^3 c^2 \sqrt {a^2 c x^2+c}}-\frac {\sqrt {a^2 x^2+1} \sqrt {\tan ^{-1}(a x)} \cos \left (3 \tan ^{-1}(a x)\right )}{24 a^3 c^2 \sqrt {a^2 c x^2+c}} \]

[Out]

1/3*x^3*arctan(a*x)^(3/2)/c/(a^2*c*x^2+c)^(3/2)+1/144*FresnelC(6^(1/2)/Pi^(1/2)*arctan(a*x)^(1/2))*6^(1/2)*Pi^
(1/2)*(a^2*x^2+1)^(1/2)/a^3/c^2/(a^2*c*x^2+c)^(1/2)-3/16*FresnelC(2^(1/2)/Pi^(1/2)*arctan(a*x)^(1/2))*2^(1/2)*
Pi^(1/2)*(a^2*x^2+1)^(1/2)/a^3/c^2/(a^2*c*x^2+c)^(1/2)+3/8*arctan(a*x)^(1/2)/a^3/c^2/(a^2*c*x^2+c)^(1/2)-1/24*
cos(3*arctan(a*x))*(a^2*x^2+1)^(1/2)*arctan(a*x)^(1/2)/a^3/c^2/(a^2*c*x^2+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.48, antiderivative size = 247, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 7, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.269, Rules used = {4944, 4971, 4970, 3312, 3296, 3304, 3352} \[ -\frac {3 \sqrt {\frac {\pi }{2}} \sqrt {a^2 x^2+1} \text {FresnelC}\left (\sqrt {\frac {2}{\pi }} \sqrt {\tan ^{-1}(a x)}\right )}{8 a^3 c^2 \sqrt {a^2 c x^2+c}}+\frac {\sqrt {\frac {\pi }{6}} \sqrt {a^2 x^2+1} \text {FresnelC}\left (\sqrt {\frac {6}{\pi }} \sqrt {\tan ^{-1}(a x)}\right )}{24 a^3 c^2 \sqrt {a^2 c x^2+c}}+\frac {3 \sqrt {\tan ^{-1}(a x)}}{8 a^3 c^2 \sqrt {a^2 c x^2+c}}-\frac {\sqrt {a^2 x^2+1} \sqrt {\tan ^{-1}(a x)} \cos \left (3 \tan ^{-1}(a x)\right )}{24 a^3 c^2 \sqrt {a^2 c x^2+c}}+\frac {x^3 \tan ^{-1}(a x)^{3/2}}{3 c \left (a^2 c x^2+c\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(x^2*ArcTan[a*x]^(3/2))/(c + a^2*c*x^2)^(5/2),x]

[Out]

(3*Sqrt[ArcTan[a*x]])/(8*a^3*c^2*Sqrt[c + a^2*c*x^2]) + (x^3*ArcTan[a*x]^(3/2))/(3*c*(c + a^2*c*x^2)^(3/2)) -
(Sqrt[1 + a^2*x^2]*Sqrt[ArcTan[a*x]]*Cos[3*ArcTan[a*x]])/(24*a^3*c^2*Sqrt[c + a^2*c*x^2]) - (3*Sqrt[Pi/2]*Sqrt
[1 + a^2*x^2]*FresnelC[Sqrt[2/Pi]*Sqrt[ArcTan[a*x]]])/(8*a^3*c^2*Sqrt[c + a^2*c*x^2]) + (Sqrt[Pi/6]*Sqrt[1 + a
^2*x^2]*FresnelC[Sqrt[6/Pi]*Sqrt[ArcTan[a*x]]])/(24*a^3*c^2*Sqrt[c + a^2*c*x^2])

Rule 3296

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> -Simp[((c + d*x)^m*Cos[e + f*x])/f, x] +
Dist[(d*m)/f, Int[(c + d*x)^(m - 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0]

Rule 3304

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[(f*x^2)/d],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3312

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin
[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1])
)

Rule 3352

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelC[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rule 4944

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp
[((f*x)^(m + 1)*(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x])^p)/(d*f*(m + 1)), x] - Dist[(b*c*p)/(f*(m + 1)), Int[(
f*x)^(m + 1)*(d + e*x^2)^q*(a + b*ArcTan[c*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && EqQ[e,
 c^2*d] && EqQ[m + 2*q + 3, 0] && GtQ[p, 0] && NeQ[m, -1]

Rule 4970

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[d^q/c^(m
 + 1), Subst[Int[((a + b*x)^p*Sin[x]^m)/Cos[x]^(m + 2*(q + 1)), x], x, ArcTan[c*x]], x] /; FreeQ[{a, b, c, d,
e, p}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && (IntegerQ[q] || GtQ[d, 0])

Rule 4971

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[(d^(q +
1/2)*Sqrt[1 + c^2*x^2])/Sqrt[d + e*x^2], Int[x^m*(1 + c^2*x^2)^q*(a + b*ArcTan[c*x])^p, x], x] /; FreeQ[{a, b,
 c, d, e, p}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] &&  !(IntegerQ[q] || GtQ[d, 0])

Rubi steps

\begin {align*} \int \frac {x^2 \tan ^{-1}(a x)^{3/2}}{\left (c+a^2 c x^2\right )^{5/2}} \, dx &=\frac {x^3 \tan ^{-1}(a x)^{3/2}}{3 c \left (c+a^2 c x^2\right )^{3/2}}-\frac {1}{2} a \int \frac {x^3 \sqrt {\tan ^{-1}(a x)}}{\left (c+a^2 c x^2\right )^{5/2}} \, dx\\ &=\frac {x^3 \tan ^{-1}(a x)^{3/2}}{3 c \left (c+a^2 c x^2\right )^{3/2}}-\frac {\left (a \sqrt {1+a^2 x^2}\right ) \int \frac {x^3 \sqrt {\tan ^{-1}(a x)}}{\left (1+a^2 x^2\right )^{5/2}} \, dx}{2 c^2 \sqrt {c+a^2 c x^2}}\\ &=\frac {x^3 \tan ^{-1}(a x)^{3/2}}{3 c \left (c+a^2 c x^2\right )^{3/2}}-\frac {\sqrt {1+a^2 x^2} \operatorname {Subst}\left (\int \sqrt {x} \sin ^3(x) \, dx,x,\tan ^{-1}(a x)\right )}{2 a^3 c^2 \sqrt {c+a^2 c x^2}}\\ &=\frac {x^3 \tan ^{-1}(a x)^{3/2}}{3 c \left (c+a^2 c x^2\right )^{3/2}}-\frac {\sqrt {1+a^2 x^2} \operatorname {Subst}\left (\int \left (\frac {3}{4} \sqrt {x} \sin (x)-\frac {1}{4} \sqrt {x} \sin (3 x)\right ) \, dx,x,\tan ^{-1}(a x)\right )}{2 a^3 c^2 \sqrt {c+a^2 c x^2}}\\ &=\frac {x^3 \tan ^{-1}(a x)^{3/2}}{3 c \left (c+a^2 c x^2\right )^{3/2}}+\frac {\sqrt {1+a^2 x^2} \operatorname {Subst}\left (\int \sqrt {x} \sin (3 x) \, dx,x,\tan ^{-1}(a x)\right )}{8 a^3 c^2 \sqrt {c+a^2 c x^2}}-\frac {\left (3 \sqrt {1+a^2 x^2}\right ) \operatorname {Subst}\left (\int \sqrt {x} \sin (x) \, dx,x,\tan ^{-1}(a x)\right )}{8 a^3 c^2 \sqrt {c+a^2 c x^2}}\\ &=\frac {3 \sqrt {\tan ^{-1}(a x)}}{8 a^3 c^2 \sqrt {c+a^2 c x^2}}+\frac {x^3 \tan ^{-1}(a x)^{3/2}}{3 c \left (c+a^2 c x^2\right )^{3/2}}-\frac {\sqrt {1+a^2 x^2} \sqrt {\tan ^{-1}(a x)} \cos \left (3 \tan ^{-1}(a x)\right )}{24 a^3 c^2 \sqrt {c+a^2 c x^2}}+\frac {\sqrt {1+a^2 x^2} \operatorname {Subst}\left (\int \frac {\cos (3 x)}{\sqrt {x}} \, dx,x,\tan ^{-1}(a x)\right )}{48 a^3 c^2 \sqrt {c+a^2 c x^2}}-\frac {\left (3 \sqrt {1+a^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {\cos (x)}{\sqrt {x}} \, dx,x,\tan ^{-1}(a x)\right )}{16 a^3 c^2 \sqrt {c+a^2 c x^2}}\\ &=\frac {3 \sqrt {\tan ^{-1}(a x)}}{8 a^3 c^2 \sqrt {c+a^2 c x^2}}+\frac {x^3 \tan ^{-1}(a x)^{3/2}}{3 c \left (c+a^2 c x^2\right )^{3/2}}-\frac {\sqrt {1+a^2 x^2} \sqrt {\tan ^{-1}(a x)} \cos \left (3 \tan ^{-1}(a x)\right )}{24 a^3 c^2 \sqrt {c+a^2 c x^2}}+\frac {\sqrt {1+a^2 x^2} \operatorname {Subst}\left (\int \cos \left (3 x^2\right ) \, dx,x,\sqrt {\tan ^{-1}(a x)}\right )}{24 a^3 c^2 \sqrt {c+a^2 c x^2}}-\frac {\left (3 \sqrt {1+a^2 x^2}\right ) \operatorname {Subst}\left (\int \cos \left (x^2\right ) \, dx,x,\sqrt {\tan ^{-1}(a x)}\right )}{8 a^3 c^2 \sqrt {c+a^2 c x^2}}\\ &=\frac {3 \sqrt {\tan ^{-1}(a x)}}{8 a^3 c^2 \sqrt {c+a^2 c x^2}}+\frac {x^3 \tan ^{-1}(a x)^{3/2}}{3 c \left (c+a^2 c x^2\right )^{3/2}}-\frac {\sqrt {1+a^2 x^2} \sqrt {\tan ^{-1}(a x)} \cos \left (3 \tan ^{-1}(a x)\right )}{24 a^3 c^2 \sqrt {c+a^2 c x^2}}-\frac {3 \sqrt {\frac {\pi }{2}} \sqrt {1+a^2 x^2} C\left (\sqrt {\frac {2}{\pi }} \sqrt {\tan ^{-1}(a x)}\right )}{8 a^3 c^2 \sqrt {c+a^2 c x^2}}+\frac {\sqrt {\frac {\pi }{6}} \sqrt {1+a^2 x^2} C\left (\sqrt {\frac {6}{\pi }} \sqrt {\tan ^{-1}(a x)}\right )}{24 a^3 c^2 \sqrt {c+a^2 c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.57, size = 338, normalized size = 1.37 \[ \frac {96 a^3 x^3 \tan ^{-1}(a x)^2+144 a^2 x^2 \tan ^{-1}(a x)-i a^2 x^2 \sqrt {3 a^2 x^2+3} \sqrt {-i \tan ^{-1}(a x)} \Gamma \left (\frac {1}{2},-3 i \tan ^{-1}(a x)\right )+i a^2 x^2 \sqrt {3 a^2 x^2+3} \sqrt {i \tan ^{-1}(a x)} \Gamma \left (\frac {1}{2},3 i \tan ^{-1}(a x)\right )+27 i \left (a^2 x^2+1\right )^{3/2} \sqrt {-i \tan ^{-1}(a x)} \Gamma \left (\frac {1}{2},-i \tan ^{-1}(a x)\right )-27 i \left (a^2 x^2+1\right )^{3/2} \sqrt {i \tan ^{-1}(a x)} \Gamma \left (\frac {1}{2},i \tan ^{-1}(a x)\right )-i \sqrt {3 a^2 x^2+3} \sqrt {-i \tan ^{-1}(a x)} \Gamma \left (\frac {1}{2},-3 i \tan ^{-1}(a x)\right )+i \sqrt {3 a^2 x^2+3} \sqrt {i \tan ^{-1}(a x)} \Gamma \left (\frac {1}{2},3 i \tan ^{-1}(a x)\right )+96 \tan ^{-1}(a x)}{288 a^3 c^2 \left (a^2 x^2+1\right ) \sqrt {a^2 c x^2+c} \sqrt {\tan ^{-1}(a x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(x^2*ArcTan[a*x]^(3/2))/(c + a^2*c*x^2)^(5/2),x]

[Out]

(96*ArcTan[a*x] + 144*a^2*x^2*ArcTan[a*x] + 96*a^3*x^3*ArcTan[a*x]^2 + (27*I)*(1 + a^2*x^2)^(3/2)*Sqrt[(-I)*Ar
cTan[a*x]]*Gamma[1/2, (-I)*ArcTan[a*x]] - (27*I)*(1 + a^2*x^2)^(3/2)*Sqrt[I*ArcTan[a*x]]*Gamma[1/2, I*ArcTan[a
*x]] - I*Sqrt[3 + 3*a^2*x^2]*Sqrt[(-I)*ArcTan[a*x]]*Gamma[1/2, (-3*I)*ArcTan[a*x]] - I*a^2*x^2*Sqrt[3 + 3*a^2*
x^2]*Sqrt[(-I)*ArcTan[a*x]]*Gamma[1/2, (-3*I)*ArcTan[a*x]] + I*Sqrt[3 + 3*a^2*x^2]*Sqrt[I*ArcTan[a*x]]*Gamma[1
/2, (3*I)*ArcTan[a*x]] + I*a^2*x^2*Sqrt[3 + 3*a^2*x^2]*Sqrt[I*ArcTan[a*x]]*Gamma[1/2, (3*I)*ArcTan[a*x]])/(288
*a^3*c^2*(1 + a^2*x^2)*Sqrt[c + a^2*c*x^2]*Sqrt[ArcTan[a*x]])

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*arctan(a*x)^(3/2)/(a^2*c*x^2+c)^(5/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \mathit {sage}_{0} x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*arctan(a*x)^(3/2)/(a^2*c*x^2+c)^(5/2),x, algorithm="giac")

[Out]

sage0*x

________________________________________________________________________________________

maple [F]  time = 8.99, size = 0, normalized size = 0.00 \[ \int \frac {x^{2} \arctan \left (a x \right )^{\frac {3}{2}}}{\left (a^{2} c \,x^{2}+c \right )^{\frac {5}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*arctan(a*x)^(3/2)/(a^2*c*x^2+c)^(5/2),x)

[Out]

int(x^2*arctan(a*x)^(3/2)/(a^2*c*x^2+c)^(5/2),x)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: RuntimeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*arctan(a*x)^(3/2)/(a^2*c*x^2+c)^(5/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: Error executing code in Maxima: expt: undefined: 0 to a negative e
xponent.

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {x^2\,{\mathrm {atan}\left (a\,x\right )}^{3/2}}{{\left (c\,a^2\,x^2+c\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2*atan(a*x)^(3/2))/(c + a^2*c*x^2)^(5/2),x)

[Out]

int((x^2*atan(a*x)^(3/2))/(c + a^2*c*x^2)^(5/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{2} \operatorname {atan}^{\frac {3}{2}}{\left (a x \right )}}{\left (c \left (a^{2} x^{2} + 1\right )\right )^{\frac {5}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*atan(a*x)**(3/2)/(a**2*c*x**2+c)**(5/2),x)

[Out]

Integral(x**2*atan(a*x)**(3/2)/(c*(a**2*x**2 + 1))**(5/2), x)

________________________________________________________________________________________